UFA125A UTIFLEX®

UFA125A is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

CENTER CONDUCTOR

Silver plated copper per ASTM B-298

DIELECTRIC

Low density PTFE in accordance with MIL-DTL-17

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

OUTER SHIELD

High-strength, high-conductivity copper-alloy wire per UNS C17510, silver-coated per ASTM B-298

JACKET

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Mechanical/Physical Properties

mediamedia i nysidai i roperties			
In all at Diagraphs	in	0.125	
Jacket Diameter	mm	3.18	
Weight	grams/ft	≤ 8.8	
weight	grams/m	≤ 28.9	
Min Static Bend Radius	in	0.200	
Will Static Bellu Raulus	mm	5.08	
Flex Life - Snake ³	cycles	10,000	
Center Conductor Strands		1	

Electrical Properties

Velocity of Propagation	(%)	77		
RF Shielding	(dB) at 1 GHz	≥ 100		
Capacitance	pF/ft	26.46		
Capacitance	pF/m	86.80		
Cutoff Frequency	GHz	52.1		
Corona Extinction Voltage	VRMS @ 60Hz	2000		
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000		
Insertion Loss Stability	% Change ²	≤ 5		
K1	Ft (m)	13.95 (0.458)		
K2	Ft (m)	0.40 (0.013)		

Maximum Attenuation¹, Power, and VSWR^{6,7}

(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	10.0	0.33	515	1.20
1	14.0	0.47	363	1.20
5	33.0	1.09	160	1.20
10	48.0	1.58	112	1.20
18	66.0	2.18	82	1.20
26.5	82.0	2.70	67	1.20
40	104.0	3.42	54	1.20
50	119.0	3.89	48	1.20

UFA125A UTIFLEX®

Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, +125 °C for 168 hours (cable and SMA connectors only)
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs.
Humidity	MIL-STD-810, Method 108, Procedure 1 and 2
Salt Fog	MIL-STD-810, Method 509, Procedure 1
Sand and Dust	MIL-STD-810, Method 510, Procedure 1
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19
Outgassing	Less than 1% TML and 0.1% CVCM
Radiation Resistance	30 Mrads
Flammability	14 CFR Part 25, Appendix F, Part I (b) (7), 60° flammability test

Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

Notes

- 1. Maximum Attenuation (db/100Ft) = K1vF + K2F where F is Frequency in GHz.
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 in.
- **3.** Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm from 36 to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle.
- 4. Not used.
- Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- **6.** Test Plots required with Shipment (Attenuation and VSWR).
- 7. VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

Maximum Power Handling

