UFA147A UTIFLEX®

UFA147A is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

Details and Materials

CENTER CONDUCTOR

Silver plated copper per ASTM B-298

DIELECTRIC

Low density PTFE in accordance with MIL-DTL-17

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

OUTER SHIELD

Silver plated copper per ASTM B-298

JACKET

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Mechanical/Physical Properties

mediamout i hysical i roperties				
Landard Diamenton	in	0.147		
Jacket Diameter	mm	3.73		
Weight	grams/ft	≤ 12.1		
weight	grams/m	≤ 39.7		
Min Static Bend Radius	in	0.500		
Min Static Bend Radius	mm	12.70		
Flex Life - Snake ³	cycles	10,000		
Center Conductor Strands		1		

Electrical Properties

•			
Velocity of Propagation	(%)	77	
RF Shielding	(dB) at 1 GHz	≥ 100	
Canacitanas	pF/ft	26.41	
Capacitance	pF/m	86.66	
Cutoff Frequency	GHz	41.3	
Corona Extinction Voltage	VRMS @ 60Hz	2000	
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000	
Insertion Loss Stability	% Change ²	≤ 5	
K1	Ft (m)	10.99 (0.361)	
K2	Ft (m)	0.40 (0.013)	

Maximum Attenuation¹, Power, and VSWR^{6,7}

(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	8.0	0.26	739	1.25
1	11.0	0.37	520	1.25
5	27.0	0.87	228	1.25
10	39.0	1.27	159	1.25
18	54.0	1.76	116	1.25
26.5	67.0	2.20	95	1.25
40	85.0	2.80	76	1.25

UFA147A UTIFLEX®

Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)	
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, +125 °C for 168 hours (cable and SMA connectors only)	
Vibration	MIL-STD-202, Method 204, Test Condition B	
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs.	
Humidity	MIL-STD-810, Method 108, Procedure 1 and 2	
Salt Fog	MIL-STD-810, Method 509, Procedure 1	
Sand and Dust	MIL-STD-810, Method 510, Procedure 1	
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17	
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19	
Outgassing	Less than 1% TML and 0.1% CVCM	
Radiation Resistance	30 Mrads	
Flammability	14 CFR Part 25, Appendix F, Part I (b) (7), 60° flammability test	

Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

Notes

- 1. Attenuation (db/100Ft) = K1.VF + K2.F where F is Frequency in GHz.
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch
- **3.** Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm from 36 to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle.
- 4. Not used.
- Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- **6.** Test Plots required with Shipment (Attenuation and VSWR).
- VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

Maximum Power Handling

