
UFA210A **UTiFLEX®**

UFA210A is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

Details and Materials CENTER CONDUCTOR Silver plated copper per ASTM B-298 **DIELECTRIC** Low density PTFE in accordance with MIL-DTL-17 **OUTER CONDUCTOR** Silver plated copper per ASTM B-298 **OUTER SHIELD** Silver plated copper per ASTM B-298 **JACKET** Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Mechanical/Physical Properties

Mechanical/Physical Properties				
0	in	0.0551		
Center Conductor Diameter	mm	1.40		
Dielectric Diameter	in	0.160		
Dielectric Diameter	mm	4.06		
Outer Conductor Diameter	in	0.1670		
	mm	4.24		
Outer Shield Diameter	in	0.186		
	mm	4.72		
Jacket Diameter	in	0.210		
	mm	5.33		
Jacket Wall Thickness	in	≥ 0.012		
Jacket Wall Hillokiless	mm	≥ 0.305		
Weight	grams/ft	≤ 22.0		
weight	grams/m	≤ 72.2		
Min Static Bend Radius	in	0.380		
WIIII STATIC DEITU KAUTUS	mm	9.65		
Flex Life - Snake ³	cycles	100,000		
Center Conductor Strands		1		

Electrical Properties

Velocity of Propagation	(%)	77	
RF Shielding	(dB) at 1 GHz	≥ 100	
Canacitanas	pF/ft	26.45	
Capacitance	pF/m	86.79	
Maximum Frequency	GHz	26.5	
Corona Extinction Voltage	VRMS @ 60Hz	2000	
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000	
Insertion Loss Stability	% Change ²	≤ 5	
K1	Ft (m)	7.33 (0.240)	
K2	Ft (m)	0.39 (0.013)	

UFA210A UTiFLEX®

Maximum Attenuation¹, Power, and VSWR^{6,7}

(at 20°C and Sea Level)

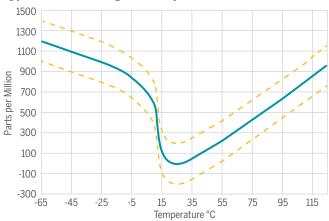
Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	5.4	0.18	1429	≤ 1.25:1
1	8.0	0.26	999	≤1.25:1
5	18.4	0.60	427	≤1.25:1
10	27.0	0.89	292	≤ 1.25:1
18	39.0	1.28	210	≤ 1.25:1
26.5	49.0	1.61	168	≤ 1.25:1

Environmental Properties

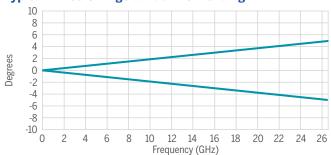
Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, +125 °C for 168 hours (cable and SMA connectors only)
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased \leq 10 bar/min to 100 +/- 2 bar for 12 hrs.
Humidity	MIL-STD-810, Method 507.6, Procedure I and II
Salt Fog	MIL-STD-810, Method 509, Procedure I
Sand and Dust	MIL-STD-810, Method 510, Procedure I
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19
Outgassing	Less than 1% TML and 0.1% CVCM
Radiation Resistance	30 Mrads
Flammability	14 CFR Part 25, Appendix F, Part I (b) (7), 60° flammability test

Notes

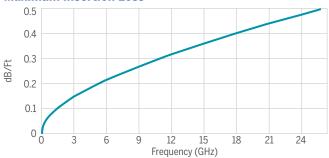
- 1. Maximum Attenuation (db/100Ft) = K1VF + K2F where F is Frequency in GHz
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch
- Straight configuration for one flex cycle.

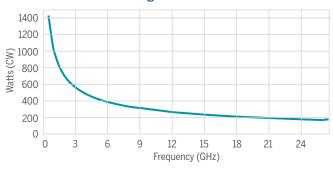

 4. Typical phase change vs bending for cable wrapped 360° around a 4.5 in diameter mandrel

 5. Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 550.


 6. Test Plots required.

- 6. Test Plots required with Shipment (Attenuation and VSWR)
- 7. VSWR testing to be performed on -foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.


Typical Phase Change vs. Temperature⁵


Typical Phase Change Window vs. Bending⁴

Maximum Insertion Loss

Maximum Power Handling

