UFA210B UTIFLEX®

UFA210B is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

CENTER CONDUCTOR

Silver plated copper per ASTM B-298

DIELECTRIC

Low density PTFE in accordance with MIL-DTL-17

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

OUTER SHIELD

Silver plated copper per ASTM B-298

JACKET

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Impedance 50 Ohms

Mechanical/Physical Properties

mediamedizi nysicai i roperties		
In all at Diamenton	in	0.210
Jacket Diameter	mm	5.33
Weight	grams/ft	≤ 22.0
weight	grams/m	≤ 72.2
Min Static Bend Radius	in	0.380
Will Static Deliu Raulus	mm	9.65
Flex Life - Snake ³	cycles	100,000
Center Conductor Strands		19

Electrical Properties

Electrical Froperties				
Velocity of Propagation	(%)	77		
RF Shielding	(dB) at 1 GHz	≥ 100		
Capacitance	pF/ft	26.45		
Сараспансе	pF/m	86.79		
Maximum Frequency	GHz	26.5		
Corona Extinction Voltage	VRMS @ 60Hz	2000		
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000		
Insertion Loss Stability	% Change ²	≤ 5		
K1	Ft (m)	8.14 (0.267)		
K2	Ft (m)	0.40 (0.013)		

Maximum Attenuation¹, Power, and VSWR⁵⁶

(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	6.0	0.20	1329	≤1.25:1
1	9.0	0.30	930	≤1.25:1
5	20.2	0.66	399	≤ 1.25:1
10	30.0	0.98	273	≤ 1.25:1
18	42.0	1.38	197	≤ 1.25:1
26.5	53.0	1.74	158	≤ 1.25:1

UFA210B UTIFLEX®

Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 165 °C (cable and SMA connectors only)	
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, 165 °C for 168 hours (cable and SMA connectors only)	
Vibration	MIL-STD-202, Method 204, Test Condition B	
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs.	
Humidity	MIL-STD-810, Method 507.5, Procedure I and II	
Salt Fog	MIL-STD-810, Method 509	
Sand and Dust	MIL-STD-810, Method 510, Procedure I	
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17	
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19	
Outgassing	Less than 1% TML and 0.1% CVCM	
Radiation Resistance	30 Mrads	
Flammability	14 CFR Part 25, Appendix F, Part I (b) (7), 60° flammability test	

Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

Maximum Power Handling

Notes

- 1. Maximum Attenuation (db/100Ft) = K1VF + K2F where F is Frequency in GHz
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch
- **3.** 3-ft sample. One end is fixed and the other end is moved inward along the axis of the sample for 1.5 ft forcing the cable into a "U" shape and then returns to straight configuration for one flex cycle.
- **4.** Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other
- 5. Test Plots required with Shipment (Attenuation and VSWR)
- **6.** VSWR testing to be performed on -foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

206 Jones Blvd, Pottstown, PA 19464, United States +1 (610) 495-0110
© Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved. Rev.2: 07/2025

