
UFB142C UTiFLEX®

UFB142C is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

Mechanical/Physical Properties

mechanical/Physical Properties		
Oantan Oandurkan Diamatan	in	0.0426
Center Conductor Diameter	mm	1.08
Dialantaia Diamatan	in	0.1080
Dielectric Diameter	mm	2.74
Outer Conductor Diameter	in	0.1165
	mm	2.96
Outer Shield Diameter	in	0.130
Outer Snield Diameter	mm	3.30
L. L. D' L	in	0.142
Jacket Diameter	mm	3.61
Jacket Wall Thickness	in	≥ 0.003
Jacket Wall Thickness	mm	≥ 0.076
Weight	grams/ft	≤ 9.9
Weight	grams/m	≤ 32.5
Min Chabia Dand Dadius	in	0.380
Min Static Bend Radius	mm	9.65
Flex Life - Snake ³	cycles	75,000
Center Conductor Strands		7

Electrical Properties

Velocity of Propagation	(%)	82.0	
RF Shielding	(dB) at 1 GHz	≥ 100	
Canacitanas	pF/ft	27.11	
Capacitance	pF/m	88.94	
Cutoff Frequency	GHz	42.14	
Corona Extinction Voltage	VRMS @ 60Hz	2500	
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000	
Insertion Loss Stability	% Change ²	≤ 5	
K1	Ft (m)	10.97 (0.360)	
K2	Ft (m)	0.11 (0.004)	

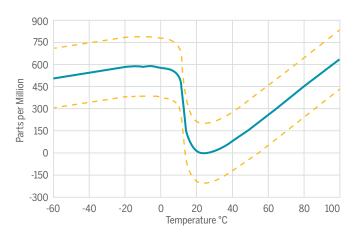
206 Jones Blvd, Pottstown, PA 19464, United States 4+1 (610) 495-0110 © Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved.

UFB142C UTiFLEX®

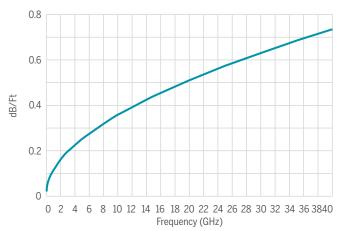
Maximum Attenuation¹, Power, and VSWR^{6,7}

(at 20°C and Sea Level)

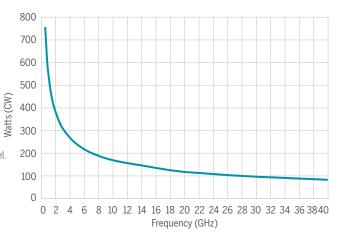
Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	8.0	0.26	755	1.25
1	11.0	0.36	532	1.25
5	25.0	0.82	236	1.25
10	36.0	1.17	166	1.25
18	49.0	1.59	123	1.25
26.5	59.0	1.95	100	1.25
40	74.0	2.42	81	1.25


Environmental Properties

	ziivii oiiii ciitai i Topci tico			
Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)			
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, +125°C for 168 hours (cable and SMA connectors only)			
Vibration	MIL-STD-202, Method 204, Test Condition B			
High Pressure	Pressure increased \leq 10 bar/min to 100 +/- 2 bar for 12 hrs.			
Low Pressure	SAE-AS-13441, Method 1004.1			
Humidity	MIL-STD-810, Method 507.5, Procedure I and II			
Salt Fog	MIL-STD-810, Method 509, Procedure 1			
Sand and Dust	MIL-STD-810, Method 510, Procedure 1			
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17			
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19			
Outgassing	Less than 1% TML and 0.1% CVCM			
Radiation Resistance	30 Mrads			
Flammability	14 CFR Part 25, Appendix F, Part I (b)(7), 60° flammability test			


Notes

- 1. Attenuation (db/100Ft) = K1VF + K2F where F is Frequency in GHz.
- **2.** Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
 Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm from 36 inches to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle.
- **4.** Typical phase change vs bending for cable wrapped 360° around a 4.5 in diameter mandrel.
- 5. Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- 6. Test Plots required with Shipment (Attenuation and VSWR).
- 7. VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.


Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

Maximum Power Handling

