UFB197C UTIFLEX®

UFB197C is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

CENTER CONDUCTOR

High-strength, highconductivity copperalloy wire per ASTM B-624, silver-coated per ASTM B-298

DIELECTRIC

Ultra Low density PTFE in accordance with MIL-DTL-17

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

OUTER SHIELD

Silver plated copper per ASTM B-298

JACKET

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Mechanical/Physical Properties

meenamean i nysicai i roperties			
Includ Diameter	in	0.197	
Jacket Diameter	mm	5.00	
Weight	grams/ft	≤ 19.8	
weight	grams/m	≤ 65.0	
Min Static Bend Radius	in	0.500	
WIIII Static Dellu Raulus	mm	12.70	
Dynamic Flex Life - Snake ³	cycles	150,000	
Center Conductor Strands		7	

Electrical Properties

Velocity of Propagation	(%)	81.5	
RF Shielding	(dB) at 1 GHz	≥ 100	
Canacitanas	pF/ft	24.99	
Capacitance	pF/m	82.00	
Maximum Frequency	GHz	26.5	
Corona Extinction Voltage	VRMS @ 60Hz	3500	
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000	
Insertion Loss Stability	% Change ²	≤ 5	
K1	Ft (m)	8.56 (0.281)	
K2	Ft (m)	0.12 (0.004)	

Maximum Attenuation¹, Power, and VSWR⁴

(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	6	0.20	1358	≤1.250:1
1	9	0.28	957	≤1.250:1
5	20	0.65	422	≤1.250:1
10	28	0.93	296	≤1.250:1
18	38	1.26	218	≤1.250:1
26.5	47	1.55	178	≤1.250:1

UFB197C UTIFLEX®

Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 165 °C (cable and SMA connectors only)	
Aging Stability	Not Applicable for MIL-DTL-17, Type IX Jackets	
Vibration	MIL-STD-202, Method 204, Test Condition B	
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs.	
Humidity	MIL-STD-810, Method 507.5, Procedure I and II	
Salt Fog	MIL-STD-810, Method 509	
Sand and Dust	MIL-STD-810, Method 510, Procedure 1	
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17	
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19	
Outgassing	Less than 1% TML and 0.1% CVCM	
Radiation Resistance	30 Mrads	
Flammability	14 CFR Part 25, Appendix F, Part I (b)(7), 60° flammability test	

Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

Notes

- **1.** Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- 3. Snake test. One end of a 3-ft sample is fixed. The other end is moved inward along the axis of the sample forcing the cable into a "U" shape. It then returns to straight configuration for one flex cycle.
- **4.** VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.
- Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.

Maximum Power Handling

