UFB197C UTIFLEX®

UFB197C is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

Details and Materials

RoHS Compliant

Mechanical/Physical Properties

Oonton Oondustan Diamata	in	0.057
Center Conductor Diameter	mm	1.45
Dielectric Diameter	in	0.149
Dielectric Diameter	mm	3.78
Outer Conductor Diameter	in	0.157
Outer Conductor Diameter	mm	3.99
Outer Shield Diameter	in	0.174
Outer Shield Diameter	mm	4.42
Jacket Diameter	in	0.197
Jacket Diameter	mm	5.00
Jacket Wall Thickness	in	≥ 0.010
Jacket Wall HillChiess	mm	≥ 0.254
Weight	grams/ft	≤ 19.8
weight	grams/m	≤ 65.0
Min Static Bend Radius	in	0.500
	mm	12.70
Dynamic Flex Life - Snake ³	cycles	150,000
Center Conductor Strands		7

Electrical Properties

(%)	81.5	
(dB) at 1 GHz	\geq 100	
pF/ft	24.99	
pF/m	82.00	
GHz	26.5	
VRMS @ 60Hz	3500	
VRMS @ 60Hz	5000	
% Change ²	≤ 5	
Ft (m)	8.56 (0.281)	
Ft (m)	0.12 (0.004)	
	(dB) at 1 GHz pF/ft pF/m GHz VRMS @ 60Hz VRMS @ 60Hz % Change ² Ft (m)	

206 Jones Blvd, Pottstown, PA 19464, United States **L** +1 (610) 495-0110 © Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved. MICRO·COAX

UTIFLEX®

Maximum Attenuation¹, Power, and VSWR⁴

(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	6	0.20	1358	\leq 1.250:1
1	9	0.28	957	≤1.250:1
5	20	0.65	422	≤1.250:1
10	28	0.93	296	≤1.250:1
18	38	1.26	218	≤1.250:1
26.5	47	1.55	178	≤1.250:1

Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 165 °C (cable and SMA connectors only)	
Aging Stability	Not Applicable for MIL-DTL-17, Type IX Jackets	
Vibration	MIL-STD-202, Method 204, Test Condition B	
High Pressure	Pressure increased \leq 10 bar/min to 100 +/- 2 bar for 12 hrs.	
Humidity	MIL-STD-810, Method 507.5, Procedure I and II	
Salt Fog	MIL-STD-810, Method 509	
Sand and Dust	MIL-STD-810, Method 510, Procedure 1	
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17	
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19	
Outgassing	Less than 1% TML and 0.1% CVCM	
Radiation Resistance	30 Mrads	
Flammability	14 CFR Part 25, Appendix F, Part I (b)(7), 60° flammability test	

Notes

- **1.** Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
 Snake test. One end of a 3-ft sample is fixed. The other end is moved inward along the axis of the sample forcing the cable into a "U" shape. It then returns to straight configuration for one flex cycle.
- 4. VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.
- Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.

206 Jones Blvd, Pottstown, PA 19464, United States **L** +1 (610) 495-0110 © Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved. Rev.1: 06/2025

Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

MICRO·COAX