# UFB311A UTIFLEX®

UFB311A is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.



Ultra Low density PTFE in accordance with MIL-DTL-17

**DIELECTRIC** 

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

**OUTER SHIELD** 

Silver plated copper per ASTM B-298

**JACKET** 

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX



Impedance 50 Ohms



RoHS Compliant

# **Mechanical/Physical Properties**

| mechanical rifysical rioperties        |          |         |
|----------------------------------------|----------|---------|
| Jacket Diemeter                        | in       | 0.311   |
| Jacket Diameter                        | mm       | 7.90    |
| Weight                                 | grams/ft | ≤ 44.5  |
| Weight                                 | grams/m  | ≤ 146.0 |
| Min Static Bend Radius                 | in       | 1.000   |
| MIN Static Bend Radius                 | mm       | 25.40   |
| Dynamic Flex Life - Snake <sup>3</sup> | cycles   | 15,000  |
| Center Conductor Strands               |          | 1       |

## **Electrical Properties**

| Velocity of Propagation         | (%)                   | 84.5         |
|---------------------------------|-----------------------|--------------|
| RF Shielding                    | (dB) at 1 GHz         | ≥ 100        |
| 0                               | pF/ft                 | 24.10        |
| Capacitance                     | pF/m                  | 79.06        |
| Maximum Frequency               | GHz                   | 19.25        |
| Corona Extinction Voltage       | VRMS @ 60Hz           | 2600         |
| Dielectric Withstanding Voltage | VRMS @ 60Hz           | 5000         |
| Insertion Loss Stability        | % Change <sup>2</sup> | ≤ 5          |
| K1                              | Ft (m)                | 4.43 (0.145) |
| K2                              | Ft (m)                | 0.11 (0.004) |

# Maximum Attenuation<sup>1</sup>, Power, and VSWR<sup>6,7</sup>

(at 20°C and Sea Level)

| Frequency<br>GHz | Attenuation dB/100ft | dB/m | Power<br>Watts (CW) | VSWR |
|------------------|----------------------|------|---------------------|------|
| 0.5              | 3.0                  | 0.10 | 3023                | 1.25 |
| 1                | 5.0                  | 0.15 | 2126                | 1.25 |
| 5                | 10.0                 | 0.34 | 931                 | 1.25 |
| 10               | 15.0                 | 0.50 | 648                 | 1.25 |
| 18               | 21.0                 | 0.68 | 474                 | 1.25 |





# UFB311A UTIFLEX®

# **Environmental Properties**

| Thermal Shock           | MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)   |
|-------------------------|-------------------------------------------------------------------------------------|
| Aging Stability         | MIL-DTL-17, Paragraph 4.8.16, +125 °C for 168 hours (cable and SMA connectors only) |
| Vibration               | MIL-STD-202, Method 204, Test Condition B                                           |
| High Pressure           | Pressure increased $\leq$ 10 bar/min to 100 +/- 2 bar for 12 hrs.                   |
| Low Pressure            | SAE-AS-13441, Method 1004.1                                                         |
| Humidity                | MIL-STD-810, Method 507.5,<br>Procedure I and II                                    |
| Salt Fog                | MIL-STD-810, Method 509, Procedure I                                                |
| Sand and Dust           | MIL-STD-810, Method 510, Procedure I                                                |
| Stress Crack Resistance | MIL-DTL-17, Paragraph 4.8.17                                                        |
| Cold Bend Test          | MIL-DTL-17, Paragraph 4.8.19                                                        |
| Outgassing              | Less than 1% TML and 0.1% CVCM                                                      |
| Radiation Resistance    | 30 Mrads                                                                            |
| Flammability            | 14 CFR Part 25, Appendix F, Part I (b)(7),<br>60° flammability test                 |

#### **Notes**

- 1. Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- $\textbf{2.} \ \ \text{Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.}$
- **3.** Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm from 36 to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle.
- **4.** Typical phase change vs bending for cable wrapped 360° around 3 in diameter mandrel.
- Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- 6. Test Plots required with Shipment (Attenuation and VSWR).
- VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

## Typical Phase Change vs. Temperature<sup>5</sup>



# Typical Phase Change Window vs. Bending4



#### **Maximum Insertion Loss**



# **Maximum Power Handling**





