UFB311A UTIFLEX®

UFB311A is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

Details and Materials CENTER CONDUCTOR Silver plated copper per ASTM B-298 **DIELECTRIC** Ultra Low density PTFE in accordance with MIL-DTL-17 **OUTER CONDUCTOR** Silver plated copper per ASTM B-298 **OUTER SHIELD** Silver plated copper per ASTM B-298 **JACKET** Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Mechanical/Physical Properties

Mechanical/Physical Properties				
in	0.0907			
mm	2.30			
in	0.2430			
mm	6.17			
in	0.2540			
mm	6.45			
in	0.280			
mm	7.11			
in	0.311			
mm	7.90			
in	≥ 0.010			
mm	≥ 0.254			
grams/ft	≤ 44.5			
grams/m	≤ 146.0			
in	1.000			
mm	25.40			
cycles	15,000			
	1			
	in mm grams/ft grams/m in mm			

Electrical Properties

Velocity of Propagation	(%)	84.5
RF Shielding	(dB) at 1 GHz	≥ 100
Canacitanas	pF/ft	24.10
Capacitance	pF/m	79.06
Maximum Frequency	GHz	19.25
Corona Extinction Voltage	VRMS @ 60Hz	2600
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000
Insertion Loss Stability	% Change ²	≤ 5
K1	Ft (m)	4.43 (0.145)
K2	Ft (m)	0.11 (0.004)

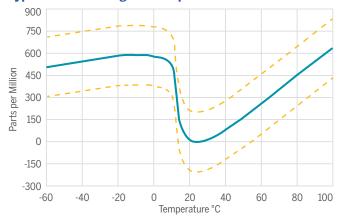
206 Jones Blvd, Pottstown, PA 19464, United States \$\(\cup +1\) (610) 495-0110 © Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved.

UFB311A UTIFLEX®

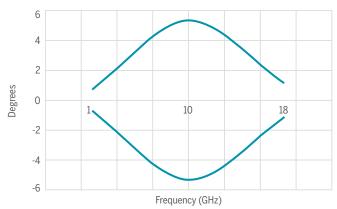
Maximum Attenuation¹, Power, and VSWR^{6,7}

(at 20°C and Sea Level)

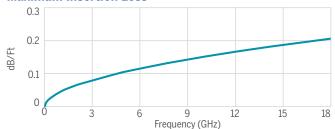
Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	3.0	0.10	3023	1.25
1	5.0	0.15	2126	1.25
5	10.0	0.34	931	1.25
10	15.0	0.50	648	1.25
18	21.0	0.68	474	1.25

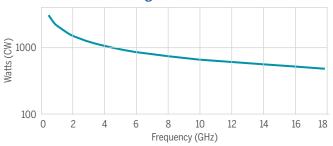

Environmental Properties

Environmental Proper	lies
Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, +125 °C for 168 hours (cable and SMA connectors only)
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased \leq 10 bar/min to 100 +/- 2 bar for 12 hrs.
Low Pressure	SAE-AS-13441, Method 1004.1
Humidity	MIL-STD-810, Method 507.5, Procedure I and II
Salt Fog	MIL-STD-810, Method 509, Procedure I
Sand and Dust	MIL-STD-810, Method 510, Procedure I
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19
Outgassing	Less than 1% TML and 0.1% CVCM
Radiation Resistance	30 Mrads
Flammability	14 CFR Part 25, Appendix F, Part I (b)(7), 60° flammability test


Notes

- 1. Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- **2.** Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- **3.** Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm from 36 to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle.
- 4. Typical phase change vs bending for cable wrapped 360° around 3 in diameter mandrel.
- 5. Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- 6. Test Plots required with Shipment (Attenuation and VSWR).
- VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.


Typical Phase Change vs. Temperature⁵


Typical Phase Change Window vs. Bending4

Maximum Insertion Loss

Maximum Power Handling

