UFC092D UTIFLEX®

UFC092D is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

Details and Materials

CENTER CONDUCTOR

Silver plated copper-clad steel per ASTM B-501

DIELECTRIC

Low density PTFE in accordance with MIL-DTL-17

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

OUTER SHIELD

Silver plated copper per ASTM B-298

JACKET

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Impedance 50 Ohms

Mechanical/Physical Properties

moonamous i nyorour i roportios				
in	0.092			
mm	2.34			
grams/ft	≤ 5.0			
grams/m	≤ 16.4			
in	0.130			
mm	3.30			
cycles	3,000			
	1			
	in mm grams/ft grams/m in mm			

Electrical Properties

=100th four Freportion		
Velocity of Propagation	(%)	77
RF Shielding	(dB) at 1 GHz	≥ 100
Canasitanas	pF/ft	26.45
Capacitance	pF/m	86.79
Maximum Frequency	GHz	70
Corona Extinction Voltage	VRMS @ 60Hz	2500
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000
Insertion Loss Stability	% Change ²	≤ 5
K1	Ft (m)	2.90 (0.686)
K2	Ft (m)	0.26 (0.009)

Maximum Attenuation¹, Power, and VSWR (at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	15	0.49	219	≤ 1.20:1
1	22	0.72	154	≤ 1.20:1
5	49	1.61	68	≤ 1.20:1
10	69	2.26	48	≤ 1.20:1
18	94	3.08	35	≤ 1.20:1
26.5	115	3.77	29	≤ 1.20:1
40	143	4.69	23	≤ 1.20:1
50	161	5.28	21	≤ 1.25:1
65	186	6.10	18	≤ 1.25:1
70	194	6.36	17	≤ 1.30:1

UFC092D UTIFLEX®

Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 165 °C (cable and SMA connectors only)
Aging Stability	Not Applicable for MIL-DTL-17, Type IX Jackets
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased \leq 10 bar/min to 100 +/- 2 bar for 12 hrs.
Humidity	MIL-STD-810, Method 507.5, Procedure I and II
Salt Fog	MIL-STD-810, Method 509
Sand and Dust	MIL-STD-810, Method 510, Procedure I
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19
Outgassing	Less than 1% TML and 0.1% CVCM
Radiation Resistance	30 Mrads
Flammability	14 CFR Part 25, Appendix F, Part I (b)(7), 60° flammability test

Typical Phase Change vs. Temperature⁴

Maximum Insertion Loss

Notes

- **1.** Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- **2.** Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- **3.** Snake test. One end of a 3-ft sample is fixed. The other end is moved inward along the axis of the sample forcing the cable into a "U" shape. It then returns to straight configuration for one flex cycle.
- **4.** Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.

Maximum Power Handling

