
UTIFLEX®

UFP088D is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX[®] to deliver.

Details and Materials

Operating Temperature -55°C to +125°C

Mechanical/Physical Properties

Center Conductor Diameter	in	0.0201
Center Conductor Diameter	mm	0.51
Dielectric Diameter	in	0.058
	mm	1.48
Outer Conductor Diameter	in	0.0662
Outer Conductor Diameter	mm	1.68
Outer Shield Diameter	in	0.078
Outer Shield Diameter	mm	1.98
Jacket Diameter	in	0.088
Jacket Diameter	mm	2.24
Jacket Wall Thickness	in	≥ 0.004
Jacket wall HillChiless	mm	≥ 0.102
Weight	grams/ft	≤ 4.5
weight	grams/m	\leq 14.8
Min Static Bend Radius	in	0.250
WIIII Static Dellu Raulus	mm	6.35
Dynamic Flex Life - Snake ³	cycles	1,000
Center Conductor Strands		1

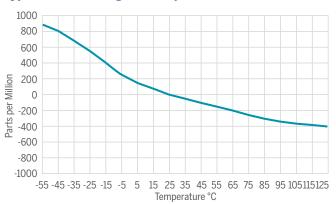
Electrical Properties

Velocity of Propagation	(%)	77
RF Shielding	(dB) at 1 GHz	≥90
Canacitanaa	pF/ft	26.45
Capacitance	pF/m	86.79
Maximum Frequency	GHz	70
Corona Extinction Voltage	VRMS @ 60Hz	500
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000
Insertion Loss Stability	% Change ²	≤ 5
K1	Ft (m)	19.80 (0.649)
K2	Ft (m)	1.40 (0.046)

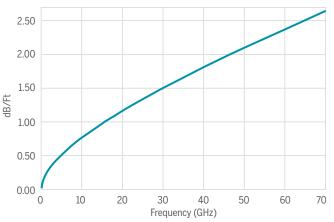
206 Jones Blvd, Pottstown, PA 19464, United States **L** +1 (610) 495-0110 © Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved. MICRO·COAX

UTIFLEX®

Maximum Attenuation¹ and VSWR⁴


(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	VSWR
1	22	0.72	\leq 1.25:1
10	77	2.53	≤1.25:1
26.5	140	4.59	≤ 1.25:1
40	182	5.97	≤ 1.25:1
60	238	7.81	≤1.25:1
70	264	8.66	≤1.35:1


Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -55 to 125 °C (cable and SMA connectors only)
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17, except at 125 °C
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19

Typical Phase Change vs. Temperature

Maximum Insertion Loss

Notes

- **1.** Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
 Snake test: A 3-ft sample is fixed on one end. The other end is moved inward along the
- axis of the sample forcing the cable into a "U" shape. It then returns to straight configuration for one flex cycle.
- **4.** VSWR testing to be performed on 10-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

206 Jones Blvd, Pottstown, PA 19464, United States ****+1 (610) 495-0110 © Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved. Rev.1: 06/2025

