UFP142A UTIFLEX®

UFP142A is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

Details and Materials

CENTER CONDUCTOR Silver plated copper

Silver plated coppe per ASTM B-298

DIELECTRIC

Micro-Coax Fluoropolymer

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

OUTER SHIELD

High-strength, high-conductivity copper-alloy wire per UNS C17510, silver-coated per ASTM B-298

JACKET

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX

Mechanical/Physical Properties

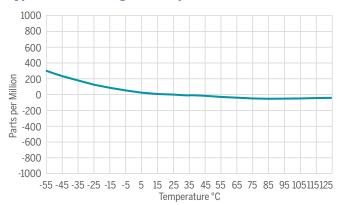
Mechanical/Physical Properties				
O-mton O-mduston Diameter	in	0.0403		
Center Conductor Diameter	mm	1.502		
Dielectric Diameter	in	0.110		
	mm	2.79		
Outer Conductor Diameter	in	0.118		
Outer Conductor Diameter	mm	3.00		
Outer Shield Diameter	in	0.132		
	mm	3.35		
Jacket Diameter	in	0.142		
	mm	3.61		
Jacket Wall Thickness	in	≥ 0.003		
Jacket Wall Hillokiless	mm	≥ 0.076		
Weight	grams/ft	≤ 10.9		
	grams/m	≤ 35.8		
Min Static Bend Radius	in	0.625		
WIII Static Della Radius	mm	15.88		
Center Conductor Strands		1		

Electrical Properties

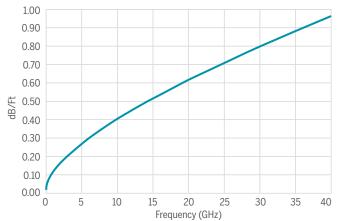
Velocity of Propagation	(%)	81.5
RF Shielding	(dB) at 1 GHz	≥ 100
Conscitones	pF/ft	25.48
Capacitance	pF/m	83.59
Maximum Frequency	GHz	40
Corona Extinction Voltage	VRMS @ 60Hz	360
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000
Insertion Loss Stability	% Change ²	≤ 5
K1	Ft (m)	10.20 (0.335)
K2	Ft (m)	0.80 (0.026)

UFP142A UTIFLEX®

Maximum Attenuation¹ and VSWR⁴


(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	VSWR
0.5	8	0.26	≤ 1.25:1
1	11	0.36	≤ 1.25:1
10	41	1.35	≤1.25:1
18	58	1.90	≤1.25:1
26.5	74	2.43	≤1.25:1
40	97	3.18	≤1.35:1


Environmental Properties

•		
Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -55 to 125 °C (cable and SMA connectors only)	
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17, except at 125 °C	
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19	

Typical Phase Change vs. Temperature

Maximum Insertion Loss

Notes

- 1. Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- **2.** Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- Reserved.
- **4.** VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

