UFP311A UTIFLEX®

UFP311A is the ideal coaxial solution for high-frequency applications in aerospace, defense, and advanced test systems. Its robust construction and reliable electrical performance make it perfect for use in radar systems, electronic warfare platforms, and space-constrained test environments. When design demands consistent performance under pressure, trust UTiFLEX® to deliver.

DIELECTRIC Micro-Coax Fluoropolymer OUTER CONDUCTOR Silver plated copper per ASTM B-298 OUTER SHIELD Silver plated copper per ASTM B-298

Mechanical/Physical Properties

mediamous i nysiour i roperties			
Is also Discount or	in	0.311	
Jacket Diameter	mm	7.90	
Weight	grams/ft	≤ 50.2	
weight	grams/m	≤ 164.7	
Min Static Bend Radius	in	TBD	
Will Static Bellu Raulus	mm	TBD	
Dynamic Flex Life ³	cycles	TBD	
Center Conductor Strands		1	

Electrical Properties

Velocity of Propagation	(%)	83
	` '	> 100
RF Shielding	(dB) at 1 GHz	≥ 100
Capacitance	pF/ft	24.54
Capacitance	pF/m	80.51
Maximum Frequency	GHz	18
Corona Extinction Voltage	VRMS @ 60Hz	TBD
Dielectric Withstanding Voltage	VRMS @ 60Hz	TBD
Insertion Loss Stability	% Change ²	≤ 5
K1	Ft (m)	4.72 (0.155)
K2	Ft (m)	0.64 (0.021)

Maximum Attenuation¹ and VSWR⁴

(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	VSWR
0.5	4	0.13	≤1.20:1
1	6	0.20	≤1.20:1
5	14	0.46	≤1.20:1
10	22	0.72	≤1.20:1
18	32	1.05	≤1.20:1

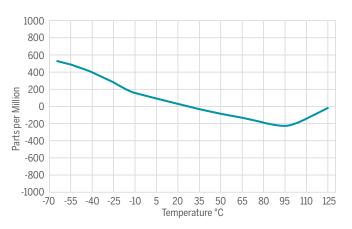
206 Jones Blvd, Pottstown, PA 19464, United States \$\(\cup +1\) (610) 495-0110

© Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved.

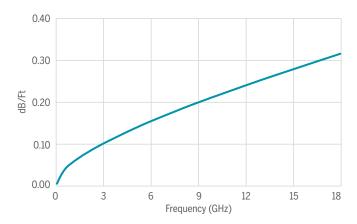
AN AMPH

JACKET

Fluorinated Ethylene Propylene (FEP) per MIL-DTL-17, Type IX



UFP311A UTIFLEX®


Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17, except at 125 °C
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19

Typical Phase Change vs. Temperature

Maximum Insertion Loss

Notes

- 1. Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- 3. Snake test: A 3-ft sample is fixed on one end. The other end is moved inward along the axis of the sample forcing the cable into a "U" shape. It then returns to straight configuration for one flex cycle.
- **4.** VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

