MCJ088D UTIFLEX®

The MCJ088D coaxial solutions are optimized for spaceflight applications. They provide the lightest weight, lowest insertion loss, and best radiation resistance in a flexible cable construction. The cables utilize our ARACON® for the outer shield, an ultra-low-density PTFE for the dielectric, and a ETFE jacket.

Details and Materials

CENTER CONDUCTOR

Silver plated copper-clad steel per ASTM B-501

DIELECTRIC

Ultra Low density PTFE in accordance with MIL-DTL-17

OUTER CONDUCTOR

Silver plated copper per ASTM B-298

OUTER SHIELD

Silver plated poly-para-phenylene terephthalamide

JACKET

ETFE-Fluoropolymer, black in color, in accordance with ASTM D-3159

Mechanical/Physical Properties

mediamedizi nysicai i roperties				
Jacket Diameter	in	0.088		
	mm	2.24		
Weight	grams/ft	≤ 3.6		
weight	grams/m	≤ 11.8		
Min Static Bend Radius	in	0.250		
WIIII Static Della Radius	mm	6.35		
Dynamic Flex Life - Snake ³	cycles	25,000		
Center Conductor Strands		1		

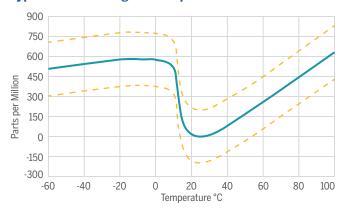
Electrical Properties

Licoti iodi i Toportics				
Velocity of Propagation	(%)	80		
RF Shielding	(dB) at 1 GHz	≥ 100		
Capacitance	pF/ft	25.46		
Capacitance	pF/m	83.53		
Maximum Frequency	GHz	65		
Corona Extinction Voltage	VRMS @ 60Hz	1000		
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000		
Insertion Loss Stability	% Change ²	≤ 5		
K1	Ft (m)	20.30 (0.666)		
K2	Ft (m)	0.11 (0.004)		

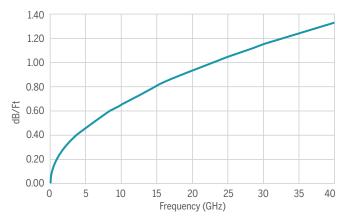
Maximum Attenuation¹, Power and VSWR

(at 20°C and Sea Level)

Frequency GHz	Attenuation dB/100ft	dB/m	Power	VSWR
0.5	14	0.47	290	≤ 1.20:1
1	21	0.69	205	≤ 1.20:1
5	46	1.51	91	≤ 1.20:1
10	66	2.17	64	≤ 1.20:1
18	89	2.92	48	≤ 1.20:1
26.5	108	3.54	39	≤1.25:1
40	133	4.36	32	≤1.25:1



MCJ088D UTIFLEX®


Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 165 °C (cable and SMA connectors only)
Aging Stability	MIL-DTL-17, Paragraph 4.8.16 +165 deg C for 168 hours (cable and connectors only)
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs
Humidity	MIL-STD-810, Method 507.5, Procedure I and II
Salt Fog	MIL-STD-810, Method 509
Sand and Dust	MIL-STD-810, Method 510, Procedure I
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19
Outgassing	Less than 1% TML and 0.1% CVCM
Radiation Resistance	100 Mrads

Typical Phase Change vs. Temperature⁴

Maximum Insertion Loss

Maximum Power Handling

Notes

- 1. Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- **2.** Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- **3.** Snake test. One end of a 3-ft sample is fixed. The other end is moved inward along the axis of the sample forcing the cable into a "U" shape. It then returns to straight configuration for one flex cycle.
- **4.** Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.

