
MCJ142A UTIFLEX®

The MCJ142A coaxial solutions are optimized for spaceflight applications. They provide the lightest weight, lowest insertion loss, and best radiation resistance in a flexible cable construction. The cables utilize our ARACON® for the outer shield, an ultra-low-density PTFE for the dielectric, and a ETFE jacket.

Details and Materials

Impedance 50 Ohms

Mechanical/Physical Properties

mediamout riffsion rioperties				
Jackst Diameter	in	0.146		
Jacket Diameter	mm	3.71		
Weight	grams/ft	≤ 8.8		
weight	grams/m	≤ 28.9		
Min Static Bend Radius	in	0.380		
Will Static Bend Radius	mm	9.65		
Flex Life ³	cycles	85,000		
Center Conductor Strands		1		

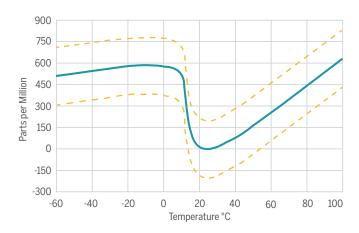
Electrical Properties

•			
Velocity of Propagation	(%)	83	
RF Shielding	(dB) at 1 GHz	≥ 100	
Canacitanas	pF/ft	24.74	
Capacitance	pF/m	81.16	
Cutoff Frequency	GHz	42.28	
Corona Extinction Voltage	VRMS @ 60Hz	1500	
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000	
Insertion Loss Stability	% Change ²	≤ 5	
K1	Ft (m)	10.01 (0.328)	
K2	Ft (m)	0.11 (0.004)	

Maximum Attenuation¹, Power, and VSWR^{6,7}

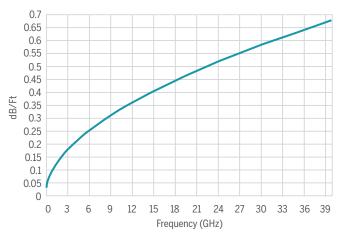
(at 20°C and Sea Level)

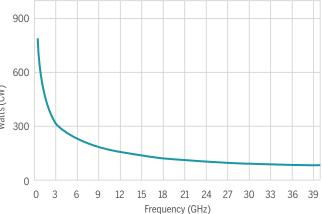
Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	7.0	0.23	789	1.20
1	10.0	0.33	556	1.20
5	23.0	0.75	246	1.20
10	33.0	1.08	173	1.20
18	44.0	1.46	128	1.20
26.5	54.0	1.79	105	1.25
40	68.0	2.22	84	1.25



MCJ142A UTIFLEX®

Environmental Properties


Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, +125°C for 168 hours (cable and SMA connectors only)
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs.
Low Pressure	SAE-AS-13441, Method 1004.1
Humidity	MIL-STD-810, Method 108, Procedure 1 and 2
Salt Fog	MIL-STD-810, Method 509, Procedure 1
Sand and Dust	MIL-STD-810, Method 510, Procedure 1
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19
Outgassing	Less than 1% TML and 0.1% CVCM
Radiation Resistance	100 Mrads


Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

Maximum Power Handling

Notes

- 1. Attenuation (db/100Ft) = K1.VF + K2.F where F is Frequency in GHz.
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- **3.** Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm from 36 inches to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle.
- 4. Typical phase change vs bending for cable wrapped 360° around a 3 in diameter mandrel.
- **5.** Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- **6.** Test Plots required with Shipment (Attenuation and VSWR).
- VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

206 Jones Blvd, Pottstown, PA 19464, United States v.+1 (610) 495-0110
© Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved. Rev.1: 11/2025

MICRO-COAXKK
AN AMPHENOL COMPANY