UFJ185A UTIFLEX®

The UFJ185A coaxial solutions are optimized for spaceflight applications. They provide the lightest weight, lowest insertion loss, and best radiation resistance in a flexible cable construction. The cables utilize our ARACON® for the outer shield, an ultra-low-density PTFE for the dielectric, and a FEP jacket.

Details and Materials CENTER CONDUCTOR Silver plated copper per ASTM B-298 **DIELECTRIC** Ultra Low density PTFE in accordance with MIL-DTL-17 **OUTER CONDUCTOR** Silver plated copper per ASTM B-298 **OUTER SHIELD** Silver plated poly-para-phenylene terephthalamide **JACKET** Fluorinated Ethylene Propylene (FEP)

Mechanical/Physical Properties

mediamous raysidar reperties				
Includ Diameter	in	0.185		
Jacket Diameter	mm	4.70		
Weight	grams/ft	≤ 13.0		
weight	grams/m	≤ 42.7		
Min Static Bend Radius	in	0.375		
Min Static Bend Radius	mm	9.53		
Flex Life - Snake ³	cycles	10,000		
Center Conductor Strands		1		

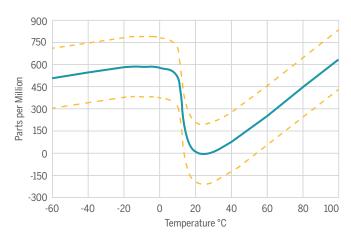
Electrical Properties

Velocity of Propagation	(%)	83.0		
RF Shielding	(dB) at 1 GHz	≥ 100		
Canacitanas	pF/ft	24.35		
Capacitance	pF/m	79.90		
Cutoff Frequency	GHz	34.03		
Corona Extinction Voltage	VRMS @ 60Hz	3500		
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000		
Insertion Loss Stability	% Change ²	≤ 5		
K1	Ft (m)	8.05 (0.264)		
K2	Ft (m)	0.11 (0.004)		

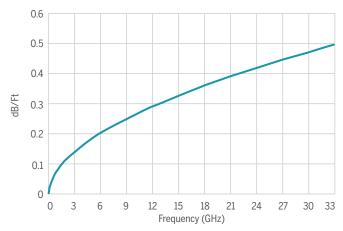
Maximum Attenuation¹, Power, and VSWR^{6,7}

(at 20°C and Sea Level)

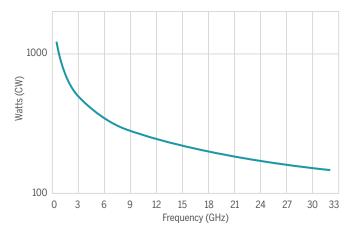
Frequency GHz	Attenuation dB/100ft	dB/m	Power Watts (CW)	VSWR
0.5	6.0	0.19	1221	1.20
1	8.0	0.27	861	1.20
5	19.0	0.61	380	1.20
10	27.0	0.87	267	1.20
18	36.0	1.19	197	1.20
26.5	44.0	1.46	161	1.25
33	50.0	1.64	146	1.25


per MIL-DTL-17, Type IX

UFJ185A UTIFLEX®


Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)
Aging Stability	MIL-DTL-17, Paragraph 4.8.16, +125 °C for 168 hours (cable and SMA connectors only)
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs.
Low Pressure	SAE-AS-13441, Method 1004.1
Humidity	MIL-STD-810, Method 507.5, Procedure 1 and 2
Salt Fog	MIL-STD-810, Method 509, Procedure 1
Sand and Dust	MIL-STD-810, Method 510, Procedure 1
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19
Outgassing	Less than 1% TML and 0.1% CVCM
Radiation Resistance	30 Mrads


Typical Phase Change vs. Temperature⁵

Maximum Insertion Loss

Maximum Power Handling

Notes

- 1. Attenuation (db/100Ft) = K1VF + K2F where F is Frequency in GHz.
- 2. Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 in.
- **3.** Connect both ends of cable to flex (snake) machine. The movement of the flex machine arm from 36 to 18 inches, stopping, and then returning to 36 inches shall be 1 flex cycle.
- 4. Not used.
- Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- 6. Test Plots required with Shipment (Attenuation and VSWR).
- 7. VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

206 Jones Blvd, Pottstown, PA 19464, United States \$\ +1 (610) 495-0110
© Amphenol CIT, 2025. All trademarks, service marks, and trade names are property of their respective holding companies. All rights reserved. Rev.1: 11/2025

