# UGF070D UTIFLEX®



The UGF070D coaxial solutions have been designed to offer superior electrical performance in the smallest possible package for fixed installations. They are a cost-effective alternative when an RG cable cannot perform to your system needs, or when a semi-rigid cable is too cumbersome.

# **Details and Materials**

#### **CENTER CONDUCTOR**

Silver plated copper-clad steel per ASTM B-501

#### **DIELECTRIC**

Ultra Low density PTFE in accordance with MIL-DTL-17

#### **OUTER CONDUCTOR**

Silver plated copper per ASTM B-298

#### **OUTER SHIELD**

Silver plated copper per ASTM B-298

# JACKET

Perfluoroalkoxy fluoropolymer (PFA) in accordance with MIL-DTL- 17, Type XIII

#### Impedance 50 Ohms





# **Mechanical/Physical Properties**

| mediamedizi nysicai i roperties        |          |       |  |  |
|----------------------------------------|----------|-------|--|--|
| lasket Diameter                        | in       | 0.070 |  |  |
| Jacket Diameter                        | mm       | 1.78  |  |  |
| Weight                                 | grams/ft | ≤ 3.0 |  |  |
| weight                                 | grams/m  | ≤ 9.8 |  |  |
| Min Static Bend Radius                 | in       | 0.300 |  |  |
| Will Static bellu Radius               | mm       | 7.62  |  |  |
| Dynamic Flex Life - Snake <sup>3</sup> | cycles   | 5,000 |  |  |
| Center Conductor Strands               |          | 1     |  |  |

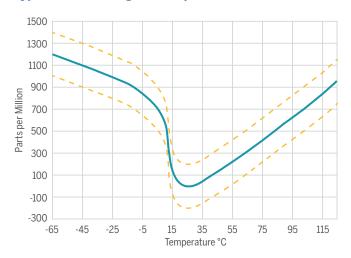
#### **Electrical Properties**

| Velocity of Propagation         | (%)                   | 78            |  |  |
|---------------------------------|-----------------------|---------------|--|--|
| RF Shielding                    | (dB) at 1 GHz         | ≥ 70          |  |  |
| Canacitanas                     | pF/ft                 | 26.11         |  |  |
| Capacitance                     | pF/m                  | 85.68         |  |  |
| <b>Cutoff Frequency</b>         | GHz                   | 106.6         |  |  |
| Corona Extinction Voltage       | VRMS @ 60Hz           | 1000          |  |  |
| Dielectric Withstanding Voltage | VRMS @ 60Hz           | 3000          |  |  |
| Insertion Loss Stability        | % Change <sup>2</sup> | ≤ 5           |  |  |
| K1                              | Ft (m)                | 29.49 (0.967) |  |  |
| K2                              | Ft (m)                | 0.25 (0.008)  |  |  |

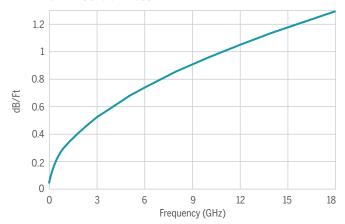
# Maximum Attenuation<sup>1</sup>, Power, and VSWR<sup>5,6</sup>

(at 20°C and Sea Level)

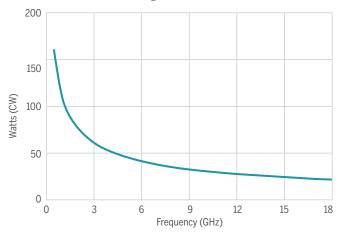
| Frequency<br>GHz | Attenuation<br>dB/100ft | dB/m | Power | VSWR |
|------------------|-------------------------|------|-------|------|
| 0.5              | 21                      | 0.69 | 159   | 1.35 |
| 1                | 30                      | 0.98 | 111   | 1.35 |
| 5                | 67                      | 2.20 | 46    | 1.35 |
| 10               | 96                      | 3.14 | 31    | 1.35 |
| 18               | 130                     | 4.26 | 22    | 1.35 |




# UGF070D UTIFLEX®


# **Environmental Properties**

| Thermal Shock           | MIL-STD-202, Method 107, 20 Cycles, -65 to 165 °C (cable and SMA connectors only)   |
|-------------------------|-------------------------------------------------------------------------------------|
| Aging Stability         | MIL-DTL-17, Paragraph 4.8.16, +165 °C for 168 hours (cable and SMA connectors only) |
| Vibration               | MIL-STD-202, Method 204, Test Condition B                                           |
| High Pressure           | Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs.                        |
| Humidity                | MIL-STD-810, Method 507.5,<br>Procedure1 and 2                                      |
| Salt Fog                | MIL-STD-810, Method 509                                                             |
| Sand and Dust           | MIL-STD-810, Method 510, Procedure 1                                                |
| Stress Crack Resistance | MIL-DTL-17, Paragraph 4.8.17                                                        |
| Cold Bend Test          | MIL-DTL-17, Paragraph 4.8.19                                                        |
|                         |                                                                                     |


# Typical Phase Change vs. Temperature<sup>4</sup>



#### **Maximum Insertion Loss**



### **Maximum Power Handling**



#### **Notes**

- **1.** Maximum attenuation (db/100Ft) = K1.VF + K2.F where F is Frequency in GHz.
- **2.** Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- **3.** 3 ft sample. One end is fixed and the other end is moved inward along the axis of the sample for 1.5 ft forcing the cable into a "U" shape and then returns to straight configuration for one flex cycle.
- **4.** Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.
- **5.** Test Plots required with Shipment (Attenuation and VSWR).
- **6.** VSWR testing to be performed on 20-foot minimum lengths with gating used to remove connector contributions. Minimum frequency points shall be 1601.

