
HFE175D

M-FLEX®

M-FLEX® Microwave Coaxial Cables are designed to accept semi-rigid cable type connectors. Unlike other single or double-braided "RG"-type flexible cables, M-FLEX HFE175D is based on MIL-DTL-17 microwave cable construction but deliberately made larger to minimize insertion loss with a precision helically-wrapped, silver-plated, copper-foil inner shield which allows for outstanding flexibility while providing 100% coverage.

Mechanical/Physical Properties

mechanical/Physical Properties			
Jacket Diameter	in	0.175	
	mm	4.45	
Weight	grams/ft	≤ 16.3	
	grams/m	≤ 53.4	
Min Static Bend Radius	in	0.500	
Will Static Bellu Raulus	mm	12.70	
Center Conductor Strands		1	

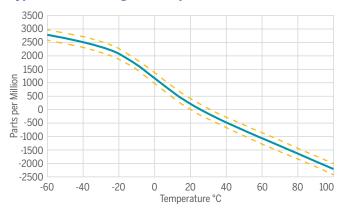
Electrical Properties

Velocity of Propagation	(%)	70		
RF Shielding	(dB) at 1 GHz	≥ 100		
Canacitanas	pF/ft	29.10		
Capacitance	pF/m	95.47		
Maximum Frequency	GHz	18		
Corona Extinction Voltage	VRMS @ 60Hz	1900		
Dielectric Withstanding Voltage	VRMS @ 60Hz	5000		
Insertion Loss Stability	% Change ²	≤ 5		
K1	Ft (m)	9.84 (0.323)		
K2	Ft (m)	0.86 (0.028)		

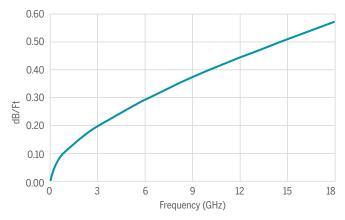
Maximum Attenuation¹, Power and VSWR

(at 20°C and Sea Level)

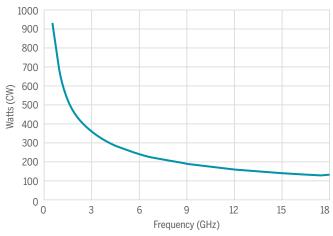
Frequency	Attenuation	ID /	Power	VSWR
GHz	dB/100ft	dB/m		
0.5	8	0.26	929	≤ 1.25:1
1	11	0.36	645	≤ 1.25:1
5	27	0.89	268	≤ 1.25:1
10	40	1.31	180	≤ 1.25:1
18	58	1.90	127	≤1.25:1



HFE175D M-FLEX®


Environmental Properties

Thermal Shock	MIL-STD-202, Method 107, 20 Cycles, -65 to 125 °C (cable and SMA connectors only)
Aging Stability	Not Applicable for MIL-DTL-17, Type IX Jackets
Vibration	MIL-STD-202, Method 204, Test Condition B
High Pressure	Pressure increased ≤ 10 bar/min to 100 +/- 2 bar for 12 hrs
Humidity	MIL-STD-810, Method 507.5, Procedure I and II
Salt Fog	MIL-STD-810, Method 509
Sand and Dust	MIL-STD-810, Method 510, Procedure I
Stress Crack Resistance	MIL-DTL-17, Paragraph 4.8.17
Cold Bend Test	MIL-DTL-17, Paragraph 4.8.19


Typical Phase Change vs. Temperature⁴

Maximum Insertion Loss

Maximum Power Handling

Notes

- 1. Maximum Attenuation (db./100Ft) = K1VF + K2F where F is Frequency in GHz.
- **2.** Insertion Loss change, while vibrated at a frequency of 6 Hz and an amplitude of 1 inch.
- 3. Snake test. One end of a 3-ft sample is fixed. The other end is moved inward along the axis of the sample forcing the cable into a "U" shape. It then returns to straight configuration for one flex cycle.
- **4.** Cable assemblies of equal length and connectors made from the same cable manufacturing lot shall phase track within 200 PPM of each other.

